

Life Estimation of High Level Waste Tank Steel for F-Tank Farm Closure Performance Assessment

Karthik Subramanian

Technology Exchange July 13, 2009 Salt Lake City

Outline

- Savannah River Site liquid waste operations
- Performance assessment for tank
 closure
- Tank life estimation technical approach
- Results
- Recommendations

F-Tank Farm Liquid Waste Tanks

- Type I Tanks
- Vintage 1950s
- Built of ASTM A285, Grade B
- Non-stress relieved
- Partial secondary containment
- 0.5-in plate construction

- Type III/IIIA Tanks
- Vintage 1970s-1980s
- Built of ASTM A537-Cl.1, A516-70
- Stress relieved
- Full secondary containment
- Tapered design from 0.5-in to 0.875-in thickness

- 0.375-in thick walls
- 0.4375-in thick bottom
- Vintage 1950s

Waste Tank Closure

- Closed through bulk waste removal, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations
- Performance assessment supporting closure of F-Tank Farm
- Carbon steel of high level waste tank initially provide a barrier contaminant escape
- Corrosion mechanisms will degrade liner over time
- Liner will no longer provide a barrier
- Estimate the time to failure of the tank liner due to corrosion processes

Life Estimation Methodology

- Goal: Determine time period that steel liners can act as a barrier to contaminant escape
 - Penetrations of tank steel
 - Size of penetrations
- Active corrosion mechanisms on the steel under closure conditions

Contamination Zone

- Function of the undissolved solids in the residual on tank bottom
- R-value: Ratio of inhibitor species (nitrite and hydroxide) to aggressive species (nitrate + chloride)
 - High R-values: Minimal Corrosion
 - Low R-values High corrosion due to insufficient inhibitors
- Results indicate no accelerated corrosion from contamination zone

Tank	R-Value
1	5.47
2	4.36
3	3.94
4	9.67
5	5.31
6	12.39
7	3.44
8	3.87
17	3.18
18	4.51
19	0.24
20	3.18
25	3.19
26	3.19
27	3.19
28	3.19
33	4.53
34	12.40
44	4.45
45	3.19
46	3.19
47	3.19

Corrosion in Concrete/Grout

- Corrosion of steel exposed to concrete/grout occurs by a complex mechanism that occurs through metal dissolution at the concrete/metal interface.
- Concrete generally prevents corrosion of the steel
 - Forms passive oxide on the steel surface
 - Maintains a high pH environment
 - Provides a matrix resistant to diffusion of aggressive species
- Passivity can be lost through carbonation or through chloride induced film breakdown
 - Pore water characteristics change with the introduction of chlorides or carbon dioxide, the passive film on the steel may break down

Stochastic Technical Approach

- Proposed to account for potential uncertainty in the timeframes proposed for regulatory compliance
- Initially Considered
 - First order reliability methods (FORM)
 - Statistical information is sparse
 - Marginal probability distributions
 - Direct uncertainty analysis
 - Separation of the probability calculations from the evaluation of the performance measure
 - Discretization of the probability intervals
- Ultimately, USED Monte Carlo Simulation
 - Inherently represent the uncertainties in the deterministic approach
 - Large number of simulations
 - Exploits the in-depth knowledge of SRS subsurface environments and HLW tanks as input distributions for the simulations

Stochastic Technical Approach

- Life of the tank liners was assumed to be a function of the time to corrosion initiation plus the time for corrosion to propagate through the liner
- Grouted Conditions

- Corrosion in grouted conditions
- Chloride induced depassivation, followed by general corrosion
- Carbonation induced loss of protective capacity of the concrete

$$t_{failure} = t_{initiation} + \frac{Thickness(mils)}{CorrosionRate(mils / year)}$$

t _{failure}	=	time to penetration of the tank wall by corrosion
t _{initiation}	=	time to chloride induced depassivation or carbonation front
Thickness	=	initial thickness of liner (mils)
Corrosion r	ate =	Dependent upon condition, i.e. chloride or carbonation

Case 1: IF t_{initiation} [CI⁻] ≥ t_{initiation} [Carbonation]

=

=

=

 $t_{failure} = t_{initiation[carbonation]} + \frac{Thickness(mils)}{CorrosionRate(mils / year)}$

 T_0 Thickness RNDCR

Corrosion Rate (Rcarb) =

Initial Thickness (mils)

T₀ – RNDCR*t_{init[carbonation]} [mils] Corrosion Rate per Distribution

10 mils/year

$$t_{failure} = t_{initiation[carbonation]} + \frac{T_o - \left(RNDCR(\frac{mils}{yr}) \cdot t_{initiation[carbonation]}\right)}{10(\frac{mils}{yr})}$$

Savannah River Remediation

Case 2: IF t_{initiation} [CI-] < t_{initiation} [Carbonation]

$$\begin{array}{lll} T_0 & = & Initial \mbox{ Thickness (mils)} \\ Thickness & = & T_0 - RNDCR * t_{init[chloride]} \mbox{ [mils]} \\ Corrosion \mbox{ Rate } (R_{Cl-}) & = & Calculated \end{array}$$

Savannah River Remediation

Embedded Case 3: IF t_{failure} [CI⁻] ≥ t_{initiation} [Carbonation]

$$t_{feiture} = t_{initiation[chioridal]} + \frac{Thickness(mils)}{CorrosionRate(mils / year)}$$

$$T_{0} = Initial Thickness(mils) = T_{0} - RNDCR^{*}t_{init[carbonation]}[mils] = T_{0} - RNDCR^{*}t_{init[carbonation]}[mils] = Dependent upon Reaction$$

$$T_{0} - \left[(t_{initiation[carbonation]} - t_{initiation[Cl]}) \cdot R_{Cl} + (t_{initiation[Cl]} \cdot RNDCR) \right]$$

$$Hore = t_{initiation[carbonation]} + \frac{T_{0} - \left[(t_{initiation[carbonation]} - t_{initiation[cl]}) \cdot R_{Cl} + (t_{initiation[Cl]} \cdot 0.04) \right] (mils)}{10(mils / year)}$$

Chloride Induced Corrosion: Initiation

- Due to the breakdown of the passive film, thereby indicating that chloride diffusion is the rate controlling step for corrosion initiation
- Followed by oxygen diffusion for corrosion reactions to occur

 Simple Empirical Model:

$$t_{initiation} = \frac{129 \cdot t_c^{1.22}}{WCR \cdot [Cl^-]^{0.42}}$$

 $t_{initiation}$ = time required for initiation
(years) t_c = thickness of the concrete
cover (in.)WCR = water-to-cement ratio[CI-] = chloride concentration in the
groundwater (ppm)

Chloride Induced Corrosion: Reaction

 Oxygen diffusion to breakdown of passivity: corrosion reaction

$$Fe + \frac{3}{2}H_2O + \frac{3}{4}O_2 = Fe(OH)_2$$

Corrosion rate

$$R_{corrosion} = \frac{4}{3} N_{O_2} \frac{M_{Fe}}{\rho_{Fe}}$$

 M_{Fe} = molecular weight of iron (56 g/mol) ρ_{Fe} = density of iron (7.86 g/cm3)

$$N_{O_2} = D_i \frac{C_{gw}}{\Delta X}$$

 N_{O2} = Flux of oxygen through concrete (mol/s/cm²) D_i = Oxygen diffusion coefficient in concrete (cm²/sec) C_{gw} = Concentration of oxygen in groundwater

 (mol/cm^3)

 ΔX = Depth of concrete (cm)

Savannah River Remediation

Chloride Distribution

100.0%	maximum	26.893
99.5%		10.365
97.5%		8.875
90.0%		7.846
75.0%	quartile	7.269
50.0%	median	6.866
25.0%	quartile	6.619
10.0%		6.480
2.5%		6.382
0.5%		6.327
0.0%	minimum	6.249

Carbonation

- Pore water pH reduces dramatically due to the conversion of the calcium hydroxide to calcium carbonate through reaction with carbon dioxide
- Complex function of the permeability of the concrete, relative humidity, and the carbon dioxide availability

$$t_{initiation[carbonation]} = \frac{X^2 C_g}{D_{i(CO_2)} C_{gw(carbon)}}$$

- = carbonation depth (cm)
 - diffusion coefficient of CO_2 in concrete (cm²/s)
- C_{gw (carbon)} C_g = total inorganic carbon (mol/cm^3)
 - Ca(OH)₂ bulk concentration (mole/cm³)
 - time (years)

Χ

D_i

Savannah River Remediation

Concrete Thickness Input

Distribution of Type IV Tank Distribution of Type I Tank Distribution of Type III Tank Concrete Thickness (in.) Concrete Thickness (in.) Concrete Thickness (in.) 23-31-22.8-30.8-4.2 22.6 30.6 22.4-30.4-4.1 22.2 30.2-22 30 4 21.8 29.8-21.6 29.6 3.9 21.4 29.4 21.2 29.2 3.8-21 29-Quantiles Quantiles Quantiles 100.0% 100.0% maximum 23.000 100.0% maximum 31.000 maximum 4.2500 99.5% 22.990 99.5% 30.990 99.5% 4.2475 97.5% 97.5% 22.950 97.5% 30.950 4.2375 90.0% 90.0% 22.799 90.0% 30.800 4.2001 75.0% 75.0% 22.499 75.0% 30.500 4.1251 quartile quartile quartile 50.0% 21.998 50.0% median 30.000 50.0% median 4.0005 median 25.0% 21.499 25.0% 29.502 25.0% 3.8751 quartile quartile quartile 10.0% 10.0% 21.199 10.0% 29.201 3.7998 2.5% 21.050 2.5% 2.5% 3.7625 29.050 0.5% 0.5% 21.010 0.5% 29.010 3.7525 0.0% 0.0% minimum 21.000 0.0% minimum 29.000 minimum 3.7500 Moments Moments Moments Mean Mean 21.999208 Mean 30.000481 4.0001247 Std Dev Std Dev 0.1443445 0.577186 Std Dev 0.5769515 0.0001443 Std Err Mean 0.0005772 Std Err Mean 0.000577 Std Err Mean upper 95% Mean 22.00034 upper 95% Mean upper 95% Mean 4.0004076 30.001612 lower 95% Mean lower 95% Mean 21.998077 lower 95% Mean 29.99935 3.9998418 N N 1000000 Ν 1000000 1000000

Savannah River Remediation

Tank Steel Thickness Input

Diffusion Coefficient Input

quantiles		
100.0%	max	0.10000
99.5%		0.07509
97.5%		0.02822
90.0%		0.00215
75.0%	quartile	0.00008
50.0%	median	1.47e-6
25.0%	quartile	3.06e-8
10.0%		1.68e-9
2.5%		2.3e-10
0.5%		1.2e-10
0.0%	min	1e-10

Corrosion Rate Distribution

%		mils/yr	l _{corr}
			(µA/cm²)
100.0%	Max	0.44978	0.9830
99.5%		0.23641	0.5167
97.5%		.15527	0.3393
90.0%		0.09727	0.2126
75.0%	Quartile	0.06418	0.1402
50.0%	Median	0.04058	0.0886
25.0%	Quartile	0.02590	0.0566
10.0%		0.01769	0.0386
2.5%		0.01253	0.0273
0.5%		0.01059	0.0231
0.0%	Min	0.01	0.0218

Savannah River

Remediation

Type I Monte Carlo Simulation

Type III/IIIA Monte Carlo Simulation

ire		Log Time to Failure:						CDF Plot			
re							0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10000 20000 30000 40000 50000 t_Failure (Years)				
		Qu	antiles								
52937			100.0%	maximu	m	4.7238		Fa	lure Mode Frequency		
46494			99.5%			4.6674					
36754			97.5%			4.5653					
24123			90.0%			4.3824					
15289			75.0%	quartile		4.1844		l evel	Count	Prob	
8272			50.0%	median		3.9176		0	365139	0.29613	
3397			25.0%	quartile		3.5311		1	867884	0.70387	
213			10.0%			2.3274		Total	1233023	1.00000	
59			2.5%			1.7731					
53			0.5%			1.7210					
49			0.0%	minimur	n	1.6921					
		Мо	ments								
0650.171 Mean 3		3.6	6912643								
763.8428			Std Dev		0.7	0.7431468					
.7929618 Std Err Mean		ean	0.0	0006693							
0667.405 upper 95% Mean		3	6.692576								
0632.937			lower 95%	6 Mean	3.6	6899256					
1233023			Ν			1233023					

Type IV Monte Carlo Simulation

Time to Failure					Log Time to Failure:					CDF Plot		
									0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.0 15000 25000 35000 45000 t_Failure (Years)			
Qu	antiles			Qu	antiles							
	100.0%	maximu	m 40391		100.0% maximum 4.6063			1.6063		Failure Mode Frequency		
	99.5%		33244		99.5%		4	1.5217				
	97.5%		24287		97.5%		4	1.3854				
	90.0%		14610		90.0%		4	1.1647				
	75.0%	quartile	8104		75.0%	quartile	;	3.9087		l evel	Count	Prob
	50.0%	median	2010		50.0%	median	;	3.3031		0	709530	0.57544
	25.0%	quartile	90		25.0%	quartile		1.9521		1	523493	0.42456
	10.0%		41		10.0%			1.6091		Total	1233023	1.00000
	2.5%		38		2.5%			1.5801				
	0.5%		37		0.5%		•	1.5684				
	0.0%	minimur	n 37		0.0%	minimun	n '	1.5624				
Мо	ments			Мо	ments							
	Mean 5161.4916			Mean		3.0	3.0267292					
	Std Dev 6847.8707			Std Dev		0.9836818						
	Std Err Mean 6.1669434			Std Err Mean		0.0	0.0008859					
	upper 95%	6 Mean	5173.5786		upper 95%	upper 95% Mean		284655				
	lower 95%	Mean	5149.4046		lower 95%	lower 95% Mean		3.0249929				
	N		1233023		Ν		1	1233023				

Recommendations

- The distributions of failure may be used as input for modeling the migration of contaminants via various mechanisms
- Median value as a best estimate for failure times under the assumption of complete consumption
- Figure of merit for percentage breached for a "patch" type models which will progressively fail the tank and assume that past a critical percentage breached, the tank no longer acts as a barrier to contaminant escape
- Entire distribution in any stochastic modeling

Concluding Remarks

- Unique condition of modeling vintage materials and infrastructural components as compared to design and build
- Utilize best engineering judgment to quantify assumptions
- Questions???